l'enchaînement de $\operatorname{Sr}(1)-\operatorname{Sr}(1)$ se fait grâce à $\mathrm{O}(12)-$ $\mathrm{O}(12)$. Dans la direction c, $\operatorname{Sr}(2)-\operatorname{Sr}(1)$ mettent en commun un sommet $\mathrm{O}(22)$. L'enchainement est donc tridimensionnel.
Nous avons d'autre part essayé, mais sans résultant, de localiser les protons. A ce niveau, les synthèses de Fourier se sont révélées infructueuses.

Références

Lehr, J. R., Brown, E. H., Frazier, A. W., Smith, J. P. \& TASHER, R. D. (1967). Crystallographic Properties of Fertilizer Compounds. Tennessee Valley Authority, Tech. Eng. Bull. No. 6.
Prewitt, C. T. (1966). SFLS-5. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.

The Crystal Structure of the Ferroelastic/Ferroelectric 2MA Polytype of Antimony(III) Oxide Iodide, $\mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$

By Volker Krämer
Kristallographisches Institut der Universität, Hebelstrasse 25, D-7800 Freiburg, Federal Republic of Germany

(Received 5 September 1977; accepted 5 April 1978)

Abstract

The combined ferroelastic/ferroelectric polytype $2 M A \mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$ is monoclinic, space group $P c$, with $a=$ 6.759 (3), $b=12.718$ (6), $c=13.405$ (6) $\AA, \beta=120.1$ (1) ${ }^{\circ}, Z=4$. The structure was solved from 1704 rfflcctions which were collected on a four-circle diffractometer. Atomic parameters were refined to a final $R=$ $0 \cdot 032$. The structure consists of enantiomorphic $\mathrm{Sb}_{2}\left[\mathrm{Sb}_{3} \mathrm{O}_{7}\right]_{\infty}^{+}$layers alternately stacked in the b direction. Layers are connected by intermediate iodine; the latter is surrounded by twelve Sb atoms forming a slightly distorted hexagonal 'anti'-cuboctahedron. The occurrence of the h.c.p. coordination polyhedron is the essential difference between $2 M A \mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$ and $2 M C \mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$ (where a cuboctahedron has been found).

Introduction

Recently we reported the crystal growth and properties of the ferroelastic antimony(III) oxide iodide $\alpha-\mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$ (Krämer, Nitsche \& Schuhmacher, 1974) as well as the determination of its crystal structure (Krämer, 1975). In the meantime, detailed optical and X-ray investigations of a great number of grown crystals have revealed that there exist at least nine polytypic modifications of $\mathrm{Sb}_{5} \mathrm{O}_{7}$ I. Centrosymmetric polytypes show pure ferroelastic behaviour, while noncentrosymmetric polytypes show combined ferroelastic and ferroelectric behaviour. In order to discriminate between the various polytypes before accurate structural knowledge is gained we proposed a modified Ramsdell notation (Ramsdell, 1947) which contains additional information on whether the structure is centrosymmetric (C) or noncentrosymmetric (A) (Nitsche, Krämer, Schuhmacher \& Bussmann, 1977). Accordingly, the former $\alpha-\mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$ becomes $2 M C \mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$.

This paper presents the results of the crystal structure analysis of $2 M A \quad \mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$, which was performed to establish the main differences between the $2 M A$ and $2 M C$ polytypes as well as to discover the building principles of all $\mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$ polytypes.

Experimental

The lattice parameters of $2 M A \mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$ were refined by a least-squares procedure from X-ray powder data obtained with a Guinier-de Wolff camera ($\mathrm{Cu} \mathrm{Ka}_{\alpha}$ radiation, $\lambda=1.5418$ A) with $\mathrm{As}_{2} \mathrm{O}_{3}$ (cubic, $a=11.0180 \AA$) as an internal standard.

Table 1. Crystal data

Formula

Formula weight
Habit
Colour
Lattice parameters

Density
Reflection condition
Space group
Radiation
Linear absorption coefficient Crystal size
$2 M A \mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$

$$
847.65
$$

Flat pseudohexagonal prism
Transparent, colourless
$a=6.759(3) \AA$
$b=12.718$ (6)
$c=13.405(6)$
$\beta=120.1(1)^{\circ}$
$V=998.0 \AA^{3}$
$Z=4$
$D_{\text {pycn }}=5.55 \mathrm{~g} \mathrm{~cm}^{-3}$
$D^{2}=5.64$
$D_{\text {calc }}^{\text {pycn }}=5.64$
$h 0 l: l=2 n$
Pc
Mo $K a \cdot \lambda=0.71069 \AA$
$\mu_{\text {Mo }}=162 \cdot 2 \mathrm{~cm}^{-1}$
$460 \times 100 \times 430 \mu \mathrm{~m}$

A vapour-grown single-domain crystal was selected for Weissenberg and precession photographs to find initial lattice parameters and possible space groups. Xray intensities from this crystal were measured on an automatic four-circle diffractometer (Enraf-Nonius CAD-4) by the $\omega-2 \theta$ scan method. Characteristic Mo Ka radiation (Mo tube, graphite monochromator) was employed and detected by a scintillation counter. Crystal data are listed in Table 1.

Choice of the proper space group

Crystals of $2 M A \quad \mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$ are ferroelectric and show orthorhombic symmetry in single-crystal photographs. Together with the reflection conditions found, space group $P 2 n n$ was indicated with $a=6.759, b=12.718$, $c=11.609 \AA$. However, detailed piezoelectric measurements yield significant signals in all directions perpendicular to the b axis. Therefore, the glide plane perpendicular to (001) is not strictly realized, and the correct point-group symmetry is reduced to monoclinic m.

For reasons of direct structural comparisons between both polytypes [$2 M A$ and $2 M C\left(P 2_{1} / c\right)$], space group $P c$ with the glide plane at height $y=\frac{1}{4}$ and the lattice parameters $a_{\text {mon }}=a_{\text {orth }}, b_{\text {mon }}=b_{\text {orth }}, c_{\text {mon }}=$ $c_{\text {orth }} / \frac{1}{2} \sqrt{ } 3, \beta=120 \cdot 1^{\circ}$ were chosen.

It is interesting to note that a priori refinement in space group $P 2 n n$ converged at $R=0.055$ (Krämer, 1976); i.e. the positions of all atoms in space group Pc do not vary significantly from the positions in $P 2 n n-$ as confirmed by the final lists of atomic coordinates.

Data reduction

All calculations were performed with computer programs from the XRAY system (Stewart, Kundell \& Baldwin, 1970). 1704 independent reflections were collected, 1613 of which had $I \geq 3 \sigma(I)$. Intensities were corrected for absorption effects by the program ORABS, which computes transmission factors and mean path lengths in the crystal by Gaussian integration.

Structure solution and refinement

The structure was easily solved by comparing the Patterson maps of $2 M C$ and $2 M A \mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$, on the assumption that the latter has a similar but noncentrosymmetric arrangement of Sb atoms.

Severalleast-squares refinement cycles on all positional, isotropic extinction, and thermal parameters of O, and anisotropic thermal parameters of Sb and I resulted
in a final agreement index of $R=0.032^{*}$ and an average shift/error of 2.7×10^{-2}. Scattering factors for $\mathrm{Sb}^{3+}, \mathrm{I}^{-}$(Cromer \& Waber, 1965), and O^{2-} (Baur, 1956) were used and corrected for anomalous dispersion (Cromer \& Liberman, 1970).

Description of the structure

The atomic coordinates are listed in Table 2, interatomic distances in Table 3.

[^0]Table 2. Fractional coordinates ($\times 10^{4}$)
Estimated standard deviations are in parentheses.

	x	y	z
	x	y	
$\mathrm{Sb}(1 A)$	$-701(7)$	$2345(1)$	$4079(3)$
$\mathrm{Sb}(1 B)$	$39(7)$	$7548(1)$	$4301(3)$
$\mathrm{Sb}(2 A)$	$3206(7)$	$2460(2)$	$2652(3)$
$\mathrm{Sb}(2 B)$	$2914(7)$	$7541(2)$	$2352(4)$
$\mathrm{Sb}(3 A)$	$-3561(7)$	$2451(1)$	$700(3)$
$\mathrm{Sb}(3 B)$	$-3859(6)$	$7652(1)$	$917(3)$
$\mathrm{Sb}(4 A)$	$2931(7)$	$551(1)$	$802(3)$
$\mathrm{Sb}(5 A)$	$3028(7)$	$4520(1)$	$807(3)$
$\mathrm{Sb}(4 B)$	$-3664(7)$	$5551(1)$	$-800(3)$
$\mathrm{Sb}(5 B)$	$-3581(7)$	$9519(1)$	$-805(3)$
$\mathrm{l}(1)$	0	0	2500
$\mathrm{l}(2)$	$-654(5)$	$4997(2)$	$2504(3)$
$\mathrm{O}(1 A)$	$6396(41)$	$2484(13)$	$4163(22)$
$\mathrm{O}(1 B)$	$3073(37)$	$7513(11)$	$824(20)$
$\mathrm{O}(2 A)$	$509(49)$	$1678(17)$	$432(26)$
$\mathrm{O}(3 A)$	$-15(42)$	$3858(14)$	$125(30)$
$\mathrm{O}(2 B)$	$-636(37)$	$6243(12)$	$-42(19)$
$\mathrm{O}(3 B)$	$-1146(50)$	$8429(17)$	$-36(24)$
$\mathrm{O}(4 A)$	$4378(43)$	$1247(14)$	$436(22)$
$\mathrm{O}(5 A)$	$3742(44)$	$3367(15)$	$366(22)$
$\mathrm{O}(4 B)$	$4873(51)$	$6666(17)$	$-354(26)$
$\mathrm{O}(5 B)$	$4820(48)$	$8871(15)$	$-140(24)$
$\mathrm{O}(6 A)$	$4744(54)$	$1396(18)$	$2204(26)$
$\mathrm{O}(7 A)$	$4258(47)$	$3665(15)$	$2252(22)$
$\mathrm{O}(6 B)$	$4894(56)$	$6316(17)$	$2802(26)$
$\mathrm{O}(7 B)$	$5495(59)$	$8567(20)$	$2771(28)$

Fig. 1. Enantiomorphic $\left[\mathrm{Sb}_{3} \mathrm{O}_{7}\right]^{5-}$ building units. $2 \mathrm{MC} \mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$ contains only one of these types, e.g. type a (right). In $2 M A$ $\mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$ succeeding layers are alternately built up from units of type a (right) and type b (left).

Table 3. Interatomic distances (\AA)
Standard deviations are given in parentheses.

$\mathrm{Sb}(1 A)-\mathrm{O}(1 A)$	2.03 (3)	$\mathrm{Sb}(1 B)-\mathrm{O}(1 B)$	2.05 (2)
$\mathrm{O}(2 A)$	2.00 (3)	$\mathrm{O}(2 B)$	1.94 (2)
$\mathrm{O}(3 A)$	1.97 (2)	$\mathrm{O}(3 B)$	1.92 (3)
[O(5A)	2.76 (3)]	$[\mathrm{O}(1 \mathrm{~B})$	3.00 (3)]
I(1)	2.821 (3)	I(1)	3.935 (3)
I(2)	3.988 (4)	I(2)	3.928 (4)
$\mathrm{Sb}(2 A)-\mathrm{O}(1 A)$	2.09 (2)	$\mathrm{Sb}(2 B)-\mathrm{O}(1 B)$	$2 \cdot 10$ (3)
$\mathrm{O}(6 A)$	1.98 (4)	O(6B)	1.94 (3)
$\mathrm{O}(7 A)$	1.88 (3)	$\mathrm{O}(7 B)$	2.02 (3)
[O(2A)	2.78 (3)]	[O(4B)	2.86 (3)]
I(1)	3.754 (3)	I(1)	3.754 (4)
I(2)	4.092 (5)	I(2)	$4 \cdot 101$ (5)
$\mathrm{Sb}(3 A)-\mathrm{O}(1 A)$	2.05 (3)	$\mathrm{Sb}(3 B)-\mathrm{O}(1 B)$	2.02 (3)
$\mathrm{O}(4 A)$	1.96 (2)	$\mathrm{O}(4 \mathrm{~B})$	1.94 (3)
O(5A)	1.96 (2)	$\mathrm{O}(5 B)$	1.99 (2)
[O(6A)	3.08 (4)]	[O(3B)	$2 \cdot 88$ (4)]
I(1)	3.940 (2)	I(1)	$3 \cdot 832$ (2)
I(2)	3.930 (4)	I(2)	4.002 (3)
$\mathrm{Sb}(4 A)-\mathrm{O}(2 A)$	2.04 (3)	$\mathrm{Sb}(4 B)-\mathrm{O}(2 B)$	1.98 (2)
$\mathrm{O}(4 A)$	1.94 (3)	$\mathrm{O}(4 B)$	1.98 (3)
O(6A)	1.97 (3)	$\mathrm{O}(7 B)$	2.04 (3)
[O(5B)	3.07 (3)]	[O(3A)	3.03 (2)]
I(1)	3.756 (6)	I(1)	3.777 (4)
	$4 \cdot 199$ (4)		$4 \cdot 178$ (5)
I(2)	3.896 (5)	I(2)	3.902 (6)
$\mathrm{Sb}(5 A)-\mathrm{O}(3 A)$	1.97 (3)	$\mathrm{Sb}(5 B)-\mathrm{O}(3 B)$	2.00 (2)
$\mathrm{O}(5 A)$	1.99 (3)	$\mathrm{O}(5 \mathrm{~B})$	1.90 (4)
$\mathrm{O}(7 A)$	2.00 (3)	O(6B)	1.94 (3)
[O(2B)	3.07 (2)!	[O(4A)	$3 \cdot 10$ (3)]
I(1)	3.889 (4)	I(1)	$3 \cdot 890$ (4)
I(2)	$4 \cdot 118$ (5)	I(2)	3.731 (8)
	1.170 (7)		4.188(5)

The structure of $2 M A \mathrm{Sb}_{5} \mathrm{O}_{\mathrm{I}} \mathrm{I}$ is constructed in the same way as that of $2 M C \quad \mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}:\left[\mathrm{Sb}_{3} \mathrm{O}_{7}\right]^{\text {s- }}$ units (Fig. 1) are linked by pairs of Sb atoms $[\mathrm{Sb}(4 A)$, $\mathrm{Sb}(5 A)$] to form an infinite pseudohexagonal $\mathrm{Sb}_{2}\left[\mathrm{Sb}_{3} \mathrm{O}_{7}\right]_{\infty}^{+}$layer (Fig. 2); the neighbouring layer is rotated by about 180° (rotation by 60 or 120° is also admissible), and moved by $b / 2$ in the y direction, and connected by intermediate iodine. The only essential difference between $2 M A$ and $2 M C$ is that in $2 M A$ each second layer contains the enantiomorphic $\mathrm{Sb}_{3} \mathrm{O}_{7}$ units shown in Fig. 1. Accordingly, atoms $\mathrm{Sb}(1 B)-\mathrm{Sb}(3 B)$ of stacking unit b lie in nearly the same x and y positions as $\mathrm{Sb}(1 A)-\mathrm{Sb}(3 A)$ of stacking unit a; the O , I and remaining $\mathrm{Sb}[\mathrm{Sb}(4 A), \mathrm{Sb}(5 A), \mathrm{Sb}(4 B), \mathrm{Sb}(5 B)]$ positions are not altered with respect to $2 M C$. Hence I is also twelvefold coordinated by Sb , but the resulting coordination polyhedron is a slightly distorted hexagonal 'anti'-cuboctahedron (Nitsche et al., 1977), as Fig. 3 indicates. An idealized projection of the entire atomic arrangement is shown in Fig. 4.

It can be clearly seen that all atomic distances are in good agreement with those found in $2 M C \mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$. The mean $\mathrm{Sb}-\mathrm{O}$ bond length is $1.99 \AA$, and the mean $\mathrm{Sb}-\mathrm{I}$ $3.93 \AA$. The $\mathrm{Sb}_{3} \mathrm{O}_{7}$ units are formed by (three) SbO_{3}

Fig. 2. Section of an $\mathrm{Sb}_{2}\left[\mathrm{Sb}_{3} \mathrm{O}_{7}\right]_{\infty}^{+}$layer projected onto (010). The $\left[\mathrm{Sb}_{3} \mathrm{O}_{7}\right]^{5-}$ units are of type a (cf. Fig. 1).

Fig. 3. Antimony (small filled and open circles) and iodine (large filled circles) viewed along b. Approximate heights: $\mathrm{Sb}(1 A)-$ $\mathrm{Sb}(3 A): y \simeq 0.25 ; \mathrm{Sb}(1 B)-\mathrm{Sb}(3 B): y \simeq 0.75 ; \mathrm{Sb}(4 A), \mathrm{Sb}(5 A)$: $y \simeq 0.05 / 0.45 ; \mathrm{Sb}(4 B), \mathrm{Sb}(5 B): y \simeq 0.55 / 0.95 ; \mathrm{I}(1), \mathrm{I}(2):$ $y \simeq 0.00 / 0.50$.

Fig. 4. Idealized projection of the entire framework onto (010). Small filled circles represent Sb , large ones I, and open circles O .
pyramids - as has been found in many other $\mathrm{Sb}-\mathrm{O}$ compounds. When we consider the $\mathrm{Sb}-\mathrm{O}$ bonds and the lone pair of electrons of an Sb atom [from the VSEPR model (Gillespie, 1970)], a ψ tetrahedron rather than a ψ trigonal bipyramid is obtained.* The fourth-nearest O atom which could possibly belong to the latter polyhedron has distances r such that $2 \cdot 76 \leq r$ $\leq 3 \cdot 10 \AA$ (see values in square brackets in Table 3). These rather large values are not concordant with an $\mathrm{Sb}-\mathrm{O}$ bond distance (Bovin, 1976).

Conclusions

At $165^{\circ} \mathrm{C}$ a reversible phase transformation of 2 MA $\mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$ into the prototypic hexagonal polytype 2 HA $\mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$ takes place. For the $2 H A$ polytype: $a=6 \cdot 78$, $c=12.86 \AA, Z=2$, and the most probable space group is $P \overline{6}$. The lack of an inversion centre was confirmed by high-temperature SHG measurements (Häfele, 1976). The corresponding prototypic/ferroic transition is $\overline{6} \mathrm{Fm}$ (Aizu, 1969).

Each atom of the hexagonal prototype is assumed to lie at the centre of a triangle whose vertices correspond to the positions of this atom in the three stable orientation states of the ferroic phase. The displacements of atoms in the low-temperature phase from these idealized hexagonal positions, i.e. the central atom-vertex atom distances, are of the same kind and order of magnitude ($<0.25 \AA$) as in $2 M C \mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$.

At the transition temperature T_{c} the doublerefraction index undergoes a small but discrete jump down to zero. Furthermore, the cell volume of the prototypic phase reduces to half the volume of the ferroic phase. These facts indicate a first-order phase transformation. On the other hand, the atomic displacements exhibit three degrees of freedom; thus, ferro-

[^1]elastic $2 M A \quad \mathrm{Sb}_{5} \mathrm{O}_{7} \mathrm{I}$ is also envisaged to be a threedimensional improper ferroelectric material.

From the structures of the basic polytypes, $2 M C$ and $2 M A$, we have deduced that all polytypes with higher stacking sequences consist of even-numbered multiples of both kinds of enantiomorphic stacking units (Nitsche et al., 1977). To prove this assumption the crystal structure analyses of the two four-layered polytypes are in progress.

The author is indebted to Dr A. Haase for the intensity collection and to Dr I. R. Jahn for doublerefraction measurements. Numerical computations were performed on the Univac 1106/II computer of the Rechenzentrum der Universität Freiburg. I gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft.

References

Aizu, K. (1969). J. Phys. Soc. Jpn, 27, 387-396.
Baur, H. W. (1956). Acta Cryst. 9, 515-519.
Bovin, J.-O. (1976). Acta Cryst. B32, 1771-1777.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104109.

Gillespie, R. J. (1970). J. Chem. Educ. 47, 18-23.
Häfele, H. G. (1976). Private communication.
Krämer, V. (1975). Acta Cryst. B31, 234-237.
Krämer, V. (1976). Habilitationsschrift, Univ. Freiburg.
Krämer, V., Nitsche, R. \& Schuhmacher, M. (1974). J. Cryst. Growth, 24/25, 179-182.
Nitsche, R., Krämer, V., Schuhmacher, M. \& Bussmann, A. (1977). J. Cryst. Growth, 42, 549-559.
Ramsdell, L. S. (1947). Am. Mineral. 32, 64-83.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY system. Computer Science Center, Univ. of Maryland, College Park, Maryland.

[^0]: * Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33543 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * ψ means that one vertex of the coordination polyhedron is occupied by an electron lone pair.

